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A finite-dimensional relativistic quantum mechanics is developed by first quantiz- 
ing Minkowski space. Two-dimensional space-time event observables are defined 
and quantum microscopic causality is studied. Three-dimensional colored even 
observables are introduced and second quantized on a representation space of 
the restricted Poincar6 group. Creation, annihilation, and field operators are 
introduced and a finite-dimensional Dirac theory is presented. 

1. I N T R O D U C T I O N  

A l t h o u g h  f in i t e -d imens iona l  nonre la t iv is t ic  q u a n t u m  mechan ics  has  
been  s tud ied  by  var ious  authors  [2-7],  this  work  a ppe a r s  to be  the  first to 
cons ide r  the  re la t ivis t ic  s i tua t ion  for  a f in i t e -d imens iona l  theory.  We beg in  
by  quant iz ing  M i n k o w s k i  four -space  in terms o f  a two-d imens iona l  c omp le x  
space  C 2. This  is not  a new techn ique  [8]. W h a t  seems to be new, however ,  
is our  i n t e rp re t a t ion  o f  the  se l f -ad jo in t  mat r ices  on C 2 as space- t ime  event  
obse rvab les  and  our  s tudy  o f  quan tum mic roscop i c  causal i ty .  A rela t ivis t ic  
q u a n t u m  theory ,  in one w idesp read  usage,  is one with  an ac t ion  o f  the  
Poincar6  g roup  as a u t o m o r p h i s m s  o f  the  a lgebra  o f  observables .  This  is not  
so;  the observab les  are m a p p e d  as forms are, ra ther  than  as opera to r s ,  and  
the i r  p roduc t s  are not  preserved .  

We nex t  i n t roduce  co lo red  event observab les  on C 3 and  the second  
quan t i za t ion  o f  C 3 on a r ep resen ta t ion  space  o f  the  res t r ic ted Poincar6  
group.  This  results  in a f in i te -d imens iona l  re la t ivis t ic  q u a n t u m  field theory.  
Crea t ion ,  ann ih i l a t ion ,  and  field opera to rs  are d iscussed.  F ina l ly ,  we p resen t  
a f in i t e -d imens iona l  D i r ac  theory.  Possible  app l i ca t i ons  to a quark  m o d e l  
are  men t ioned .  
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2. E V E N T  O B S E R V A B L E S  

Let M 4 be the Minkowski space consisting of4-tuples (xo, Xl, x2, x3) ~ 
with the indefinite form 

x" y = XoYo - xlyl - xzy2 - -  x3y 3 

We use the notation x ' y=XoYo-X 'y ,  where x=(xbx2 ,  x3) and y =  
(Yl, Y:, Y3)- Let L be the restricted Lorentz group on M 4. That is, L is the 
group of  real linear transformations A on M 4 satisfying Ax- Ay = x. y for 
every x, y c M 4, det A =  1, and Aoo-0.  The restricted Poincar6 group ~ is 
the set {(a, A): a 6 M 4, A c  L} with group operation 

(al, A)(ae, A2) --- (al + Ala2, AIA2) 

Let C 2 = {(051, 052): ~bl, 052~ C} with the standard inner product  (05, q,) = 
051~1+052q72, 05=(051,052), 0 = ( q q ,  q'2)~C 2- We regard C 2 as a two- 
dimensional quantum mechanical Hilbert space whose unit vectors corre- 
spond to pure states and whose set of self-adjoint matrices 12 correspond 
to observables. As we shall see, C 2 gives a quantization of  space-time. The 
special linear group SL(2, C) is called the transformation group of  C 2. For 
A ~ SL(2, C) and Q ~ II, define T(A)Q = AQA*. It is easy to check that T 
is a group homomorphism from SL(2, C) into the group of  determinant- 
preserving invertible linear operators on the real linear space fl. Define the 
set 

~(2,  C ) =  {(P, A): P c f I ,  A~SL(2 ,  C)} 

Then ~(2 ,  C) becomes a group (the inhomogeneous transformation group) 
under the operation 

([1, AO(P2, A2) = (P1 + T(AOP2, A1A2) 

For (P, A) ~ ~(2 ,  C) and Q E ~2, define 7"(P, A)Q = P+ T(A)Q. Then 

I"(P1, AOT"(P2, A:)Q = ~'(P,, Aa)(P2+ T(A2)Q) 

= PI+ T(AOP2+ T(A1A2)Q 

= T(PI+  T(A1)P2, A~A2)Q 

= T[(P1, a,)(Pz, A2)]Q 

Hence, T is a group homomorphism from P(2, C) into the group ofinvertible 
transformations on fl. We interpret 7"(P, A)Q as the observable Q after the 
transformation corresponding to (P, A) is made. 

Define rj ~f l ,  j = 0, 1, 2, 3, by 

- i  ,o[ o 0] , [01 lol , .[0 0] 
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We call ro the time observable and 5, J = 1, 2, 3, the j th  space observable. 
For x e M 4, define ~ e f~ by 

3 
;= Y xj5 

j=0  

Then ^ is a real linear bijection from M 4 to II  which satisfies det ~ = x. x =- x 2 
for all x e M 4. We denote the inverse of  ^ by v and note that 0j = �89 5),  
j = 0, 1, 2, 3. We call ~ an event observable and interpret ~ as the observable 
which measures the event x ~ M 4. 

For A c SL(2, C), define A(A) e L by A(A)x = (A~A*) v = [ T(A)~]L The 
map A : SL(2, C) ~ L is a group homomorphism onto L and in fact SL(2, C) 
is the universal covering.group of L[8]. We extend A to ~(2,  C) by defining 
A: ~(2,  C) ~ ~, where A(P, A ) x  = [ T(P, A)~y.  Notice that 

A(P, A ) x  = [ P +  T(A)R] v = / 5 +  A(A)x = (/5, A(A))x 

The following shows that the surjection A: ~(2 ,  C)-->~ is a group 
homomorphism:  

A(P1,  A,)A(P2, A2) = (/5,, A(A0)(/52, A(A2)) 

= [/51 + A(A,)/52, A(A,Az)] 

= [(P1 + T(A1)P~) ~, A(A~A2)] 

= s + T(A1)P2, AIA2) 

= A[(P,, A1)(P2, A2)] 

We interpret x--> ~ as a two-dimensional quantum field and the relation 
[(/5, A(A))x]  ̂  = T(P, A)~ can be thought of  as relativistic covariance. 

Theorem 1. (a) The eigenvalues of  ~ are h •  1/2. The corre- 
sponding eigenvectors are r177 = ( 1, (+x.  x 1/2 - x3)/(xl + ix2)) unless xl = x2 = 
0 in which case &+ = (1, 0), ~b_ = (0, 1). 

(b) x is timelike if and only if ~ is positive or negative, x is spacelike 
if and only if ~ is neither positive or negative, x is lightlike if and only if 

has eigenvalue 0. 
(c))~33 = y~ if and only if {x, y} is linearly dependent.  

Proof The proof  of  this is straightforward. �9 

Corollary 2. I f  Xo-> 0, then x is timelike if and only if ~ is positive. I f  
Xo<-0, then x is timelike if and only if ~ is negative. 

For x c M 4 we call the set {y c M 4: y = Ax, )t e R} a light plane. We call 
the condition that [~, 33] = 0 if and only if x and y lie on a common light 
plane quantum microscopic causality. It is our contention that quantum 
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microscop ic  causal i ty  should  be used instead o f  mic roscop ic  causal i ty which 
states that  q u a n t u m  fields with spacel ike separa ted  suppor ts  commute .  

We n o w  descr ibe when  ~ is a project ion.  As far  as the trivial pro jec t ions  
are concerned ,  )~ = 0 if and  only i f x  = 0 and  )~ = I if  and  only i f x  = (1, 0, 0, 0). 
The  o ther  projec t ions  on C 2 are one -d imens iona l  and  co r respond  to pure  
states in C 2. 

Theorem 3. (a))~ is a nontr ivial  project ion if and  only if x is lightlike 
and  Xo = 1. 

(b) I f ~  and  33 are nontr ivial  project ions  then  ~33 = 0 if and  only i f x  = - y .  

Proof (a) I f x  is lightlike and  Xo = �89 then  x = (�89 x), where  X 2 "~" 1. Hence ,  

:~2=[XoZ+2XoX3+X 2 2(x , - ixz)xo ] 
I_ 2(x1+ ix2)xo Xo2-2XoXa+X2J 

= [  �89 x , - i x~]  
I X l + i X 2  �89 3 J = X  

and we conc lude  that  9~ is a nontr ivial  project ion.  Converse ly ,  suppose  
is a nontr ivia l  project ion.  Then  ;2  = ; and  at least  one o f  the three  number s  
xl, x2, x3 mus t  be  nonzero .  I f  x3 ~ 0, then 

X 0 "[- X 3 = X0 2 --[- 2 X 0 X  3 + X 2 

X o - -  X 3 = Xo 2 - -  2 X o X  3 -b X 2 

imply  that  2x3 = 4XoX3 and x0 = x0Z+x 2. Hence,  x = �89 and  x 2=  1. I f  xl or  x2 
is nonzero ,  then  

X 1 -- ix2 = 2 ( X 1  - -  iX2)Xo 

implies  tha t  Xo = �89 and  f rom the above,  x 2=  �88 
(b) Suppose  that  s and  33 are nontr ivial  project ions  and  x = - y .  Apply-  

ing T h e o r e m  1, ~ and  33 mus t  commute .  But two nonequa l  one -d imens iona l  
projec t ions  c o m m u t e  if and  only if they are or thogonal .  Converse ly ,  suppose  
that  ~ and  33 are nontr ivial  project ions  and  ~33 = 0. Since ~ and  33 commute ,  
it fol lows f rom T h e o r e m  1 that  y = h x  for  some  h e R. Since ~33 = 0, we have 

A (Xo+ x3)(xl - ix2) + (xl - ix2)(Xo- Ax3) = 0 

I f  Xl or x2 is nonzero ,  then  AXo+Xo=0,  so )t = - 1 .  N o w  suppose  that  
xl = x2 = 0 and  hence x3 = +�89 Then  s = 0 implies  that  

( X  0 -t- X 3 ) ( X  0 "1-/~X3) = ( X  0 - -  X 3 ) ( X  0 - - / ~ X 3 )  = 0 

I f  x3 =�89 the first t e rm gives 2t = - 1  and  if x3 = _1, the second te rm gives 
X - - 1 .  �9 

We have  seen tha t  the pure  states in C z cor responds  to lightlike events 
x for  which Xo = �89 Since mixed  states are convex  combina t ions  of  pure  
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states, it follows that mixed states in C 2 correspond to timelike events x for 
which Xo = �89 Another simple proof  of  this result is now given. 

Corollary 4. ~ is a density matrix if and only if x is timelike and Xo = �89 

Proof. By definition, ~ is a density matrix and only its eigenvalues h+, 
X_ are nonnegative and sum to 1. Applying Theorem 1, this is equivalent 
to x being timelike and 

l=h+q-h  =Xo'4-x'x1/2"q-Xo-X'Xl/2=2Xo �9 

We call x ~ M 4 a simple event if s is a nontrivial projection. Two simple 
events x, y are called orthogonal if s = 0. 

Corollary 5. (a) I f  x, y are simple events, the following statements are 
equivalent: (1) x and y are orthogonal;  (2) x = - y ;  (3) x and y lie on a 
common light plane. 

(b) Every x ~ M 4 for which x2# 0 has a unique representation as a 
linear combination of two orthogonal simple events. In fact 

x = (Xo + x" x'/2)(�89 a,, a2, a3) + (X0 - -  X" xl/2)(�89 - -ab  -a2 ,  --a3) 

where ai = x i / 2 x ' x  1/2, i = 1, 2, 3. 
Of course, if  x 2 = 0, then x = Xo(1, 0, 0, 0). 

3. C O L O R E D  OBSERVABLES 

In this section we extend the results of  Section 2 to V = C 3. Although 
V can describe any three-dimensional quantum system such as a spin-one 
system, we shall draw our analogy from the "color  space" for a quark model 
[1, 2]. Let cl, c2, c3~R be fixed distinct numbers corresponding to color 
values. These numbers were computed in [2] but their specific values are 
not important  for our present study. Let el, e2, e3 be the standard basis for 
V. A self-adjoint matrix on C 3 with eigenvalue c~ and corresponding eigen- 
vector el is called a red observable. Denote the set of  red observables by FL 
and define the set of  yellow observables f~r and blue observables f~b in an 
analogous way. The color observable C = diag(cl, c2, c3) is the unique observ- 
able in fL  c~ f~y c~ f~b- For x ~ M 4 we define the red, yellow, and blue event 
observables xr c f~r, Xy ~ f~y, xb ~ f~b, respectively, as follows: 

X r = [i' o o] 1 Xo + X3 xl - ix2 , Xy = c2 
xl + ix2 Xo- X3 Lx l+ ix2  0 Xo+X3..I 

FXo+X3 x l - i x 2  ~ ]  

Xb'=- ~Xl; iX2 Xo--X3 
0 c3 
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Results analogous to those in Theorem 1 hold. The eigenvalues of x~ 
are ho = Cl and A• = Xo+x.xl/2: The corresponding eigenvectors are ~bo = 
(1, 0, 0), ~b• = (0, 1, (+x.  x 1/2 - x3)/(Xl +/x2)) unless xl = x2 = 0, in which case 
4)+ = (0, 1, 0), ~b_ = (0, 0, 1). The red observables Xr, Yr commute if and only 
if {x, y} is linearly dependent.  Similar results holds for xy and Xb. Different 
color observables do not commute except under degenerate circumstances. 
For example, it can be shown that xb and Zy commute if and only if 
X l  : X2 = Z1 : •2 : 0 o r  x 1 -~- x 2 : 0 and x0 + xa = c3 or Z 1 = Z 2 : 0 and Zo + z3 = c2. 

If  A is a 2 x 2 complex matrix and A ~ R, we use the notation 

Ax, r = A 

We also use the analogous notation Ax,y and A~,b. Thus, xr = Xcl , r ,  Xy : Xc2,y , 
Xb = Xc3,b, X ~ M 4. We define the groups 

SL(2, C)r = {Al:: A ~ SL(2, C)} 

~(2,  C)~ = {(Po,,, Al.r): PEf l ,  A~  SL(2, C)} 

We also define SL(2, C)y, SL(2, C)y, and ~(2,  C)b in analogous ways. For 
A zSL(2, C)r, Qsf l , ,  define T(A)Q=AQA*  and for ( P , A ) ~ ( 2 ,  C)r 
define T(P, A)Q= P+ T(A)Q. Also, define Ar: ~(2 ,  C)r--> ~ by 
A(Po,,, AI : )  = (/5, A(A)) and analogously for Ay, As. Most of the results of  
Section 2 now hold. 

4. FIELD T H E O R Y  

For m ~ •, let Hm = {p c M 4 :  p" p = m 2, Po > 0} be the mass hyperboloid. 
Then Hm is invariant under  L [8]. Let Jm be the homeomorphism of  Hm 
onto R 3 (if m = 0, onto R 3 -{0}) given by jm(p) = P. Define the measure/~,~ 
on Hm by 

= f (m2+p2) -1/2 d3p /~m(E) 
Jj re(E) 

for every measurable set E _  Hm. It can be shown that /~m is the unique 
L-invariant measure on Hm up to a multiplicative constant [8]. Every 
irreducible unitary representation of  ~ is equivalent to a representation 
~ A) o n  L2(Hm, dlxm) [8]where  

[6//(a, A)f](p) = eip'af(A-lp) 

It follows that every irreducible unitary representation of ~(2,  C) is 
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equivalent to a representation q/(P, A) on L2(Hm, dl.t,m) where 

[~(P,  A)f](p) = e'r"P f (A(A)-IP)  

For the group ~(2, C), we have the above representation for q/r (Po,,, Al,r) --- 
q/(P, A) and similarly for ~(2, C)y and ~(2, C)b. Furthermore, for the 
finite-dimensional quark model in [2], m has only six possible values given 
by the six flavor values. 

Let hi, j -- 0, 1 , . . . ,  be the Hermite functions on R. Then the functions 
hj,,j~o~(Pl, P2, P3) = hj~(Pl)hj2(P2)h~(P3),Jl,jE, j3 = 0, 1 , . . . ,  form an orthonor- 
mal basis for L2(R 3, d3p). It follows that the functions gj,;~o3(p) = 
(mE+p2)l/4hj,j~.j3(p), jl,j2,j3=O, 1 , . . . ,  form an orthonormal basis for 
L2(Hm, d/x,,). We define the annihilation and creation operators ~(1), ~*(1), 
respectively, by 

~(1)gj,j~,j 3 = k~/2gjt_l,j2,j3 

~*(  q)gJLo2,J3 = (jl + 1)'/2 gjl+l,j2,J3 

and extend by linearity to a dense subspace of L2(nm, dl.tm ). Similar defini- 
tions hold for ~(2), ~(3), ~*(2), ~*(3). Then ~ ( j )  and ~*(j ) ,  j = 1, 2, 3, 
can be thought of as operator-valued, three-component vectors, We interpret 
g~l,;:,J3 as the state of  Jl+J2+J3 Boson particles each of which has three 
possible states and the aggregate contains j~ particles in the first state, J2 in 
the second state, and J3 in the third state. Then ~ ( j )  annihilates a particle 
in the j th state, while ~*( j )  creates a particle in the jth state, j = 1, 2, 3. 

This particle interpretation becomes evident by noting that L2(H,,, d/z,,) 
is naturally isomorphic to the symmetric Fock space 

s v = c | 1 7 4  v)@(v| v|  v)@...  

where V= C 3 and | denotes the symmetric tensor product. If fbf2, f3  is 
an orthonormal basis for V, a unitary isomorphism is given by 

j i ( f /1  |  | f3J,) = gJl,J2,J3 

The following lemma represents ~ ( j )  and ~*( j )  as differential operators. 

Lemma 6. On a dense subspace of L2(H,,,, dtzm) we have fo r j  = 1, 2, 3 

�9 21,2[  l p2+m2, lp 4] 
�9 +1(r m:)-'p.,-• 1 

Opj..I 
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Proof It is well known that 

( + 0 )  _;1/2h 2-1/2 Pl ~Pl hjbJ2"J3--J1 jl-l'j2"J3 

Hence, 

2-1/2(Pl+~pl) gj,,j2,j3(P) = 2-1/2(Pl +~pl)(p2+m2)l/4hjl,J2,j3(p) 

Similarly, 

= ( ~ 2 . - t , .  ~2"~1/441/21a" " { ~  
k i t  - - H *  ] J l  I t j l _ l , j 2 , J 3 \ p ]  

+ 2-1/2[-~(p2 + m2)-1(p2 + mV)1/4hj,,h,j3(p) ] 

2-1/2 
.1/2 

m ) gJ,d:J~(P) =J1 gj,-1,j2,j3(P)+--~pl(p2+ 2-1 

2-1/2 ( pl --~Pl)hJ'd2d3(P)= (J l+  1)1/2hA+1'j2'J3 

and the proof  is analogous. �9 
The standard basis el, e2, e 3 for V corresponds to the color states since 

they are the eigenvectors of the color observable. We define the three- 
dimensional Fourier transform F3 : V--) V as the matrix 

F3 = b , b = e 2~I/3 

1 
We call the matrix Pc = F*CF3 the color momentum observable [1, 2]. The 
eigenvalues of Pc are cl, c2, ca with corresponding eigenvectors ~ = F*ej, 
j = 1, 2, 3. These give the color momentum states and have the components  
fl  =3-1/2(/~ b, 1), f2=3-1/2(b, b, 1), f3=3-1/2(1, 1, 1). We define A( f j )=  
�9 (j) and A*(fj) = ~* ( j ) ,  j = 1, 2, 3. For arbitrary f ~  V, we define 

A( f )  = • (fj, f )A( f j )  

A*( f )  = Z ( f f j )A*( f j )  

It is easy to check that [A(f) ,  A*(g)J=(g, f) .  We also define the field 
operators 

~r(f) = 2-i/2[A(f) + A*(f)]  

qJ(f) = -2-~/: i[A(f)  - A*(f)]  

In the next theorem, for f e  V, we write f =  ((f, fl), (f, f2), (f, f3)) and f =  
((fl, f ) ,  (f2,f),  (f3,f)). 
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Theorem 7. For f ~  V we have 

1 - a(f) = ~-~[f" p - l(p2 + m 2)-1~.p + ~. V] 

a*(f)  = ~-~[f. p + �89 + m 2 ) - l f . p  _ f. V] 

i 
zr(f) = Re f -p+~(p2+  mZ)-lim f . p _  i Im f. V 

0 ( f )  = - I r a  f - p + 2 ( p 2 +  m2)-lRe f . p -  i Re f. V 

Proof These follow from Lemma 6 and the definitions. �9 
From Theorem 7, i f f e  V is a real vector, we have 

or(f) = f .p,  O(f)=~(p2+m2)-~f .p- i f .V 

In particular, 
�9 O 

- i - - ,  j = 1 , 2 , 3  ~ ( f j )  = pj, ~O(fj) =2(p2+m2)-lpj 
Opj 

The jth particle number observable becomes 

N(f j )  = A*(fflA(ffl  

] 1[p~_7_5_ I 5p~ 1 pj 0 
: 2 k  Opj 4(p2+ m2) 2 ~-2(p2+ m2) + (p2+ m2) 0pj 

and the total number observable is 

x=y  N(s p2-V2-31 

We now define the second quantization of linear operators on V. If 
B: V ~  V is a linear operator, we define 

r (B)  = Y~ A*(fk)A(Bfk) 

For example, F(I )  = N, F(Pfl = N(fj) ,  j = 1, 2, 3, where Pj is the projection 
onto fj. 

Lemma 8. (a) The definition of F(B) is independent of the basis�9 
(b) If  B is self-adjoint with eigenpairs A~, gj, j = 1, 2, 3, then 

F(B) = Y. Ak(fm, gk){gk, fflA*(f~)A(fm) 
j,k,m 

= Y~ AkA*(gk)a(gk) 
k 
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(c) If B is self-adjoint, then so is F(B). 

Proof. (a) Let gj, j = 1, 2, 3, be another orthonormal basis. Then 

~A*(gk)A(Bgk)=~k A*(~ (gk, f j ) f j )A (B~  (gk, f,,,)f,n) 
\ j  m 

= ~ (gk, fj)(fm, gk)A*(fj)A(Bfm) j,k,m 

= Y. A*(fj)A(Bf~) ~ (f~, gk)(gk, fj) 
j , m  k 

= ~ A*(fj)A(Bfj) 
J 

(b) By part (a) we have 

F(B) = ~ A*(gk)A( Bgk) = ~ ZkA*(gk)A(gk) 

= ~k AkA* ( ~  (gk, f j ) f j )A(~ (gk, f,,,)f~) 

= E Ak(fm, gk)(gk, fj)A*(fj)A(fm) 
.hk, m 

(C) This follows from part (b). �9 
Let B: V~ V be self-adjoint with matrix Bjk; that is, Bfk =Y.j Bjkfj. On 

the six-dimensional space of operators spanned by ~ ( j ) ,  ~*(j) ,  j = 1, 2, 3, 
define a linear operator B by (B~)(k) = A(Bfk), (B~*)(k) = A*(Bfk). 

Lemrna 9. 
(a) ( /~)(k)=Y~ Bike(j), ( / ~ * ) ( k ) = E  Bkj**(j) 

J J 

(b) r (B)  =Z  ~ * ( k ) ( / ~ ) ( k )  =E ( / ~ * ) ( k ) * ( k )  = E Bkj~*(k)~(j) 
j , k  

Proof. 

(a) (B*)(k)=A(Bfk)=A(~Bjk f j )=~ ~kA(fj)=~Bk~*(j) 

(/~**)(k) = a*(Bfk)= A* (~ Bjkfj) = ~ Bjka*(fj) = ~ Bkj~*(j) 

(b) F(B) = 2  A*(fk)A(Bfk)=2~t*(kl(/~*l(k) 

= v~ **(k) Z Bkj~(j) 
k j 

= Y, Bkj~*(k)~(j) = ~ Y, ~k~*(k)~(j)  
j , k  j k 

= Z ( / ~ * ) ( j ) * ( j )  �9 
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A function v(j, k) = v(k,j) ,  j, k = 1, 2, 3, corresponds to a two-particle 
potential on V| V. We define the second quantization of v by 

F( v) = �89 2 v(j, k )xP'*( k )xP'*(j)xtt(j)g2"( k ) 
j,k 

We now consider dynamics. In the Heisenberg picture, we define 

~(k,  t) = eir(mt~(k)  e -ir(m' 

where H: V-> V is a self-adjoint matrix corresponding to the Hamiltonian. 
Notice that 

[~(k, j) ,  ~ ( j ,  t)] = [~*(k, t), ~*( j ,  t)] = 0 

[~(k, t), **(j ,  t)] = 3kj 

Differentiation gives 

.0q,(k, t) 
1 - -  -- [xIt(k, t), F(H)]  

Ot 

For B: V ~  V we extend the definition o f / t  by 

(B~)(k ,  t)= eirr e -'r~mt = • Bkj~(j, t) 
J 

Suppose Ho: V~  V is a free-particle Hamiltonian and v(j, k) corresponds 
to a two-particle potential. We then take H = F ( H o ) + F ( v )  as the second 
quantized Hamiltonian. The next theorem shows that rigorous results can 
be obtained in the finite-dimensional theory where the corresponding results 
in the usual infinite-dimensional theory are only heuristic. 

Theorem 10. If  ~(k,  t) = ei~'~(k) e -ir~', then 

i - =  (HoXF)(k, t)+ v(j, k)~*(j ,  t )*(j ,  t) xl2"(k, t) 
Ot 

Proof. Applying Lemma 9(b) we have 

t71 = • Hokj**(k)*(j)+�89 Y v(j, k ) ( * * ( k ) ~ * ( j ) * ( k )  
j,k j,k 

Since/4  commutes with e i~t we may write 

I7t = e i~tlTI e-ir~, 

= E nokj**(k, t)~(.h t) 
j,k 

+�89 E v(.~ k)**(k, t)**(.~ t )~( j ,  t)*(k,  t) 
j,k 
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Hence 

Now 

Thus 

.O~(n, t) 
I 

ot 
�9 (n, t)IYI-IYI~(n, t) 

= Y, Hokj[~(n, t)~*(k,  t )~( j ,  t) - ~ * ( k ,  t )~( j ,  t )~(n,  t)] 
j , k  

+�89 Y~ v(j, k)[~(n,  t)qt*(k, t)~*(j, t )~( j ,  t )~(k,  t) 
j , k  

- ~ * ( k ,  t )~*( j ,  t)~(j, t )~(k,  t )~(n,  t)] 

= ~ HokjE~P'(n, t)xl~*(k, t)]aP'(j, t) 
j , k  

+�89 E v(j, k)[xP'(n, t), xIt*(k, t)xIr*(j, t)]xtr(j, t)xP'(k, t) 
j ,k  

[~(n,  t), xP'*(k, t)~*(j, t)]=[~(n, t), ~*(k,  t )]~*(j ,  t) 

+~*(k ,  t)[~(n,  t), ~*( j ,  t)] 

= ~*( j ,  t)8,,k+~*(k, t)8, a 

OX~(n, t) 
i =E Ho.j~(j, t)+�89 v(j, n)aIr*(j, t)xlt(j, t)xIr(n, t) 

ot j j 

+�89 v(n, k)~*(k, t)~(m, t)~(k, t) 
k 

= ( n o ~ ) ( n ) +  v(j,  n)'~*(j,  t)'~(.~ t) 'I'(n, t) 

5. F I N I T E - D I M E N S I O N A L  DIRAC THEORY 

On C 3 we have defined the color observable C = diag(cl, c2, c3) and the 
color momentum observable Pc = F*3CF3 with eigenvectors el, e2, e3 and 
f~,f2,f3, respectively. We define the Klein-Gordon Hamiltonian on C 3 by 
HKG = [P2c + m2I] 1/2. The second quantized particle Klein-Gordon Hamil- 
tonian is defined as F(HKc) and the second quantized wave Klein-Gordon 
Hamiltonian is defined as 

W(HK~) = [ ' r r ( f l )2  + 'rJ'(f2)2 + qr(f3)2 + mE] 1/2 = [p2+ m21,/2 

In order to motivate a finite-dimensional Dirac theory, we consider a 
quark model discussed in [1, 2]. As shown in [1, 2], quark states are given 
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by vectors in C72. The states are conveniently described by four parameters: 
color (r, y, b), flavor (d, u, s, c, b, t), spin (up, down), type (particle, antipar- 
ticle). In this way we write C 72 as the tensor product of four subspaces, 
C 72= C3(~C6(~C2(~C 2, the color, flavor, spin, and type subspaces. On the 
spin subspace C 2, there are three spin observables, which are given by ~'1, ~'2, ~'3 
of Section 2. On the type subspace C 2, particles are represented by the 
vector 01 = (1, 0) and antiparticles by the vector 02 = (0, 1). The type observ- 
able T has eigenvalue 1 for particles and eigenvalue -1  for antiparticles. 
Thus 

The conjugation operator K takes particles to antiparticles and antiparticles 
to particles; that is, K01 = ~2 and K02 = 01. Hence, 

On the color subspace C 3, the color momentum observable has the spectral 
representation Pc = clPx+c2P2+c3P3, where P1, P2, P3 are the one- 
dimensional projections onto fl,f2, f3, respectively. We shall not need the 
flavor subspace C 6 in our present discussion except to comment that the 
constant m which follows has one of the six possible flavor values corre- 
sponding to the six flavors [2]. 

We now define the Dirac Hamiltonian as 

l iD= clP1@'rl@ K + c2P2@h@ K + c3P3@73@ K + mI @ I @ T 

This expression can be simplified by defining the following 4 x 4  matrices: 

- rj 

We then have 

l id  = ClPl@OZl + C2P2@ct2 + c3P3@ot3 + mI @oLo 

Of course, the aj, j = 0, 1, 2, 3 are the Dirac matrices and satisfy the relations 
2 [% ak]+ = 0, aj  = I, j = 0, 1, 2, 3. Because of these relations, we have 

H~ = c21P1| I + c~P2| I + c2p3@ I + m2I @ I 

= (PZc+ rn2I)| = H ~ o |  
We define 

F(HD) = clF(P1)| c2F(P2)@a2+c3F(P3)@a3+ m F ( I ) |  c~ 0 

= c~N(f~)|174174174 
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and 

W(HD) = '/r(fl) |  ce I + 7r(f2) | Ce2+ cr(f3)|174 

= pl| + P2| + P3| + m| 

The proof  of  the next theorem is tedious but straightforward. 

Theorem 11. The eigenvalues of  Ho are double eigenvalues and consist 
of  the numbers hi• = +21/2(cj + m), j = 1, 2, 3. The normalized eigenvectors 
corresponding to At• are ~|177 j -  1, 2, 3; k = 1, 2, where 

gll+ = (4--23/2)-1/2(1, O, O, 2 ' / 2 - 1 )  

g12+ = (4--23/2)-1/2( 0, 1, 21/2-1 ,  O) 

g11- ----- (4+23/2)-1/2(1, O, --21/2- 1, O) 

g12- = (4+23/2)-1/2(0, 1, -21 /2 -1 ,  O) 

g21+ = (4 - 23/2)-1/2(1, O, O, i(21/2-1)) 

g22+ = (4-23/2)-1/2(0, 1, i(21/2-1), O) 

g21- = (4+23/2)-1/2( 1, 0, 0, --i(21/2+ 1)) 

g22- = (4+23/2)-1/2(0, 1, i(21/2+ 1), 0) 

g31+ = (4-23/2)-1/2(1, 0, 21/2- 1, 0) 

g32+ = (4-23/2)-1/2(0, 1, 0, 1-21/2) 

g31- = (4+23/2)-1/2(1, 0, -21 /2 -1 ,  0) 

g32- = (4+23/2)-1/2(0, 1, 0, 21/2+ 1, 0) 

One also has the analogs of  other Hamiltonians in common use. For 
example, the Foldy-Wouthuysen form of the Dirac Hamiltonian is 

HFw = [p2 + m2i]1/2| ao 

Theorem 12. The r of I-IFw are double eigenvalues and 
consist of  the numbers Aj• = cj + m, j = 1, 2, 3. The normalized eigenvectors 
corresponding to hi• are fj|177 j = 1, 2, 3; k =  1, 2, where 

hi1+ = (1, 0, 0, 0) 

hj2+ = (0, 1, O, O) 

hil-=(O, O, l, O) 

hi2_ = (0, 0, 0, 1) j - -  1,2,3 
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