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Finite-Dimensional Relativistic Quantum Mechanics

Stanley P. Gudder'
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A finite-dimensional relativistic quantum mechanics is developed by first quantiz-
ing Minkowski space. Two-dimensional space-time event observables are defined
and quantum microscopic causality is studied. Three-dimensional colored even
observables are introduced and second quantized on a representation space of
the restricted Poincaré group. Creation, annihilation, and field operators are
introduced and a finite-dimensional Dirac theory is presented.

1. INTRODUCTION

Although finite-dimensional nonrelativistic quantum mechanics has
been studied by various authors [2-7], this work appears to be the first to
consider the relativistic situation for a finite-dimensional theory. We begin
by quantizing Minkowski four-space in terms of a two-dimensional complex
space C?. This is not a new technique [8]. What seems to be new, however,
is our interpretation of the self-adjoint matrices on C? as space-time event
observables and our study of quantum microscopic causality. A relativistic
quantum theory, in one widespread usage, is one with an action of the
Poincaré group as automorphisms of the algebra of observables. This is not
so; the observables are mapped as forms are, rather than as operators, and
their products are not preserved.

We next introduce colored event observables on C’ and the second
quantization of C* on a representation space of the restricted Poincaré
group. This results in a finite-dimensional relativistic quantum field theory.
Creation, annihilation, and field operators are discussed. Finally, we present
a finite-dimensional Dirac theory. Possible applications to a quark model
are mentioned.
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2. EVENT OBSERVABLES

Let M* be the Minkowski space consisting of 4-tuples (Xo, X;, X,, X;) €R
with the indefinite form

XY = XoYo— XiY1— XoY2— X3Y3

We use the notation x-y=x,y,~x-y, where x=(x,,x,,x;) and y=
(1, 2, ¥3)- Let L be the restricted Lorentz group on M*. That is, L is the
group of real linear transformations A on M* satisfying Ax- Ay =x-y for
every x, ye M*, det A=1, and Ay =0. The restricted Poincaré group P is
the set {(a, A): ae M* A e L} with group operation

(a1, A)az, Ay) = (a,+Aja,, AA)

Let C*={{&,, #.): ¢1, . < C} with the standard inner product (¢, ) =
i+ bohs, d=(dy, $2), ¥=(¢, ) eC’ We regard C? as a two-
dimensional quantum mechanical Hilbert space whose unit vectors corre-
spond to pure states and whose set of self-adjoint matrices {} correspond
to observables. As we shall see, C” gives a quantization of space-time. The
special linear group SL(2, C) is called the transformation group of C>. For
AeSL(2,C) and Qe Q, define T(A)Q = AQA*. It is easy to check that T
is a group homomorphism from SL(2, C) into the group of determinant-
preserving invertible linear operators on the real linear space (. Define the
et P(2,C)={(P,A): P, Ac SL(2,C)}

Then ?(2, C) becomes a group (the inhomogeneous transformation group)
under the operation

(P, A)(Py, A,) =(P,+ T(A,)P,, A, A,)
For (P, A) e ?(2,C) and Qe , define T(P, A)Q =P+ T(A)Q. Then
T(P, A)T(P,, A,)Q=T(P,, A)(P,+ T(A,)Q)
= P+ T(A,)P,+ T(A,A,)Q
=T(P,+ T(A,)P,, A,A,)Q
= TI(P,, A))(P,, A2)]Q

Hence, Tisa group homomorphism from P(2, C) into the group of invertible
transformations on ). We interpret T(P, A)Q as the observable Q after the
transformation corresponding to (P, A) is made.

Define 7;€Q, j=0,1,2,3, by

10 o 1 _[0 ——i] T_[l 0]
=l 1] TT|l1 ol TTLi ol 3T lo -1



Finite-Dimensional Relativistic Quantum Mechanics 709

We call 7, the time observable and 7, j=1,2,3, the jth space observable.
For xe M*, define £ Q by

3

A

X=X X
j=0

Then " is a real linear bijection from M*to Q which satisfies det £ = x- x = x*
for all x e M*. We denote the inverse of * by ~ and note that Q, =3Tr(Q, 7;),
j=0,1,2,3. We call £ an event observable and interpret X as the observable
which measures the event x e M*.

For Ae SL(2, C), define A(A) e Lby A(A)x = (AZA*)" =[T(A)X]". The
map A:SL(2,C)~ L is a group homomorphism onto L and in fact SL(2, C)
is the universal covering group of L[8]. We extend A to P(2, C) by defining
X:2(2,C)» P, where A(P, A)x =[T(P, A)£]". Notice that

A(P, A)x =[P+ T(A)X] = P+ A(A)x = (P, A(A))x
The following shows that the surjection A: #(2,C)-> % is a group
homomorphism:
APy, A)A(P,, Ay) = (P, A(A))(P, A(A))
=[P+ A(A) P, A(AA)]
=[(Pi+ T(A)P,), A(A1A))]
=A(P,+ T(A,)) P, A A,)
= ]\[(Pls A)(Py, Ar)]
We interpret x> X as a two-dimensional quantum field and the relation
[(B, A(A))x] = T(P, A)% can be thought of as relativistic covariance.

Theorem 1. (a) The eigenvalues of X are A.=Xotx-x"2 The corre-
sponding eigenvectors are ¢, = (1, (£x- x> —x;)/ (x, + ix,)) unless x, = x, =
0 in which case ¢, =(1,0), $_=(0,1).

(b) x is timelike if and only if £ is positive or negative, x is spacelike
if and only if £ is neither positive or negative, x is lightlike if and only if
£ has eigenvalue 0.

(c) Xy =px if and only if {x,y} is linearly dependent.

Proof. The proof of this is straightforward. B

Corollary 2. If x,=0, then x is timelike if and only if % is positive. If
X,=0, then x is timelike if and only if £ is negative.

For x € M* we call the set {y € M*: y= Ax, A e R} a light plane. We call
the condition that [X, $]=0 if and only if x and y lie on a common light
plane quantum microscopic causality. It is our contention that quantum
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microscopic causality should be used instead of microscopic causality which
states that quantum fields with spacelike separated supports commute.

We now describe when X is a projection. As far as the trivial projections
are concerned, X =0if and onlyif x=0and £ = I ifand onlyif x = (1, 0, 0, 0).
The other projections on C? are one-dimensional and correspond to pure
states in C°.

Theorem 3. (a) X is a nontrivial projection if and only if x is lightlike
and xo=%.
(b) If £ and 7 are nontrivial projections then Xy = 0 if and only if x = —y.

Proof. (a) If x is lightlike and x, =3, then x = (3, x), where x” =J. Hence,

. I:xo2 +2x0x3+ X% 2(x;— i%,) X0 ]
2006+ X)X Xoo—2XeX3+X°

1 .
_[ 5+ X3 xl—lxz]_f
xl + ix2 %_ JC3
and we conclude that X is a nontrivial projection. Conversely, suppose X

is a nontrivial projection. Then £>= £ and at least one of the three numbers
X1, X2, X3 must be nonzero. If x;# 0, then

Xot X3 = Xo2 + 2XoX; + X°

Xo— X3 = Xo> — 2XoX3 + X°
imply that 2x; = 4x,x; and x,= x,°+x* Hence, x =3 and x*=4. If x, or x,
is nonzero, then

X1 — ix2 = 2(x1 - ix2)xO
implies that xo=3} and from the above, x*=1.

(b) Suppose that £ and § are nontrivial projections and x = ~y. Apply-

ing Theorem 1, X and § must commute. But two nonequal one-dimensional
projections commute if and only if they are orthogonal. Conversely, suppose

that £ and  are nontrivial projections and £ = 0. Since X and j commute,
it follows from Theorem 1 that y = Ax for some A € R. Since £y = 0, we have

A(xp+ x3) (X — ix2) + (3, — i) (X0 — Ax3) =0
If x, or x, is nonzero, then Axy+x,=0, so A =—1. Now suppose that
x; = X, =0 and hence x; ==+3. Then £§ =0 implies that
(%0+ X3) (%o + Ax3) = (Xo = X3) (X0 — Ax3) =0
If x,=1, the first term gives A = —1 and if x;=—3, the second term gives
=—1. N

We have seen that the pure states in C* corresponds to lightlike events
x for which x,=3. Since mixed states are convex combinations of pure
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states, it follows that mixed states in C* correspond to timelike events x for
which x,=3. Another simple proof of this result is now given.

Corollary 4. % is a density matrix if and only if x is timelike and x,=3.

Proof. By definition, £ is a density matrix and only its eigenvalues A,
A_ are nonnegative and sum to 1. Applying Theorem 1, this is equivalent
to x being timelike and

1=As+A_=x+x-x"2+x,—xx"?=2x, W

We call x e M* a simple event if X is a nontrivial projection. Two simple
events x, y are called orthogonal if £ =0.

Corollary 5. (a) If x, y are simple events, the following statements are
equivalent: (1) x and y are orthogonal; (2) x=—-y; (3) x and y lie on a
common light plane.

(b) Every xe& M* for which x*#0 has a unique representation as a
linear combination of two orthogonal simple events. In fact

X = (xo+x-x1/2)(%, a,, a, az)+(xo—x- Xl/z)(%, —ay, ~a,, —as)

where a; = x;/2x-x"%,i=1,2,3.
Of course, if x*=0, then x = x,(1, 0, 0, 0).

3. COLORED OBSERVABLES

In this section we extend the results of Section 2 to V= C>. Although
V can describe any three-dimensional quantum system such as a spin-one
system, we shall draw our analogy from the ““color space” for a quark model
[1,2]. Let ¢;, ¢;, ;€ R be fixed distinct numbers corresponding to color
values. These numbers were computed in [2] but their specific values are
not important for our present study. Let e,, e,, e; be the standard basis for
V. A self-adjoint matrix on C? with eigenvalue ¢, and corresponding eigen-
vector e, is called a red observable. Denote the set of red observables by Q,
and define the set of yellow observables , and blue observables £}, in an
analogous way. The color observable C = diag(c,, c,, c;) is the unique observ-
ablein Q,nQ, " Q. For xe M * we define the red, yellow, and blue event
observables x, € (Q,, x, €Q,, x, € Q;, respectively, as follows:

Cy 0 0 x0+ x3 0 xl - ixz
x=10 xotxs x—ix,]|, x, = 0 Cy 0
0 x;tix; Xo—X; x+ix, 0 xp+x3

x0+ X3 X1 iX2 0
xp=| x+ix, x-—x5 0
0 0 C3
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Results analogous to those in Theorem 1 hold. The eigenvalues of x,
are Ao=c; and A, = x,+x-x"% The corresponding eigenvectors are ¢,=
(1,0,0), ¢.=(0, 1, (£x-x*>— x;)/(x, + ix,)) unless x, = x, = 0, in which case
¢.=(0,1,0), ¢_=(0,0, 1). The red observables x,, y, commute if and only
if {x, y} is linearly dependent. Similar results holds for x, and x,. Different
color observables do not commute except under degenerate circumstances.
For example, it can be shown that x, and z, commute if and only if
X1=Xy=zy=zy=00rx;=x,=0and xo+x3=c;0rz; =z, =0and z,+ z; = ¢,.

If Ais a 2x2 complex matrix and A € R, we use the notation

A OO

0
A;\,r = A

0

We also use the analogous notation A, , and A, ;. Thus, x, =%, ,, x, = £, ,,
xp = %, 5, x€ M*. We define the groups

SL(2,C),={A,,: Ae SL(2,C)}
@(2: C)r = {(PO,n Al,r): Pe Q, Ae SL(Z, C)}

We also define SL(2, C),, SL(2,C),, and (2, C), in analogous ways. For
A€SL(2,C), QeQ, define T(A)Q=AQA* and for (P, A)e 2?(2,C),
define T(P,A)Q=P+T(A)Q Also, define A, #(2,C),~P by
A(Po,,, A= (15, A(A)) and analogously for ny, 11,,. Most of the results of
Section 2 now hold.

4. FIELD THEORY

For meR, let H,,={pe M*: p- p=m?, p,> 0} be the mass hyperboloid.
Then H,, is invariant under L [8]. Let j, be the homeomorphism of H,,
onto R* (if m =0, onto R*—{0}) given by j,,(p) = P. Define the measure u,,
on H, by

um(E)=I (m>+p>) ™" d%
Jm(E)

for every measurable set E < H,,. It can be shown that u,, is the unique
L-invariant measure on H,, up to a multiplicative constant [8]. Every
irreducible unitary representation of % is equivalent to a representation
U%(a, A) on L*(H,,; du,,) [8] where

[ (a, MfI(p) = e®°f(A7"p)

It follows that every irreducible unitary representation of P(2,C) is
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equivalent to a representation %(P, A) on I*(H,, du,,) where
[%(P, A)fN(p) = e "7 f(A(A) ')

For the group 2(2, C), we have the above representation for %.( P, A )=
U(P, A) and similarly for #(2,C), and ?(2,C); Furthermore, for the
finite-dimensional quark model in [2], m has only six possible values given
by the six flavor values.

Let h, j=0,1,..., be the Hermite functions on R. Then the functions
hj,,sz3(P1a P2, P3) = hjl(pl)hjz(pZ)hﬁ(pS)ajlaj2’j3 =0,1,..., form an orthonor-
mal basis for L*(R®, d°p). It follows that the functions gj ;,;(p)=
(m*+p)"*h; ;. (B)s J1rj2»j3=0,1,..., form an orthonormal basis for
L*(H,, dj.,). We define the annihilation and creation operators ¥(1), ¥*(1),
respectively, by

V()80 505 = KV &ji— L
V()0 = i+ 12811500

and extend by linearity to a dense subspace of L*(H,,, du,,). Similar defini-
tions hold for ¥(2), ¥(3), ¥*(2), ¥*(3). Then ¥(j) and ¥*(j), j=1,2,3,
can be thought of as operator-valued, three-component vectors. We interpret
8.5, as the state of j;+j,+j; Boson particles each of which has three
possible states and the aggregate contains j, particles in the first state, jrin
the second state, and j; in the third state. Then ¥(j) annihilates a particle
in the jth state, while ¥*(j) creates a particle in the jth state, j=1,2,3.

This particle interpretation becomes evident by noting that L*( H,,,, du.,,)
is naturally isomorphic to the symmetric Fock space

SV=COVe(VeOV)&(VOVO V)D:---

where V=C* and ® denotes the symmetric tensor product. If fi, 5, f; is
an orthonormal basis for V, a unitary isomorphism is given by

Jf(flj1 ©f2j2 ® f3j3) = 8jiinis
The following lemma represents ¥(j) and ¥*(j) as differential operators.
Lemma 6. On a dense subspace of L*(H,,, du,,) we have for j=1,2,3

N 3
w(j)=27""2 [Pj —3(p*+m*)7'p, +a—p.]

J

N _ 9
PH(j)=2 ‘/Z[P,-+%(p2+ m?) ‘pj—g]

J
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Proof. It is well known that

5]
-1/2 . — ;1/2
2 (Pl + 6[11) hjl,jz,js =1 hjl"l,iz,fs

Hence,
2712 (Pl + ‘a—') &ivninin(P) =271 (Pl +i> (p°+m*)"*h;, , ,(p)
op1 4
= (P2+ m2)1/4ji/2hjl—l,j2,j3(p)
+27Y2 [%(p2+ m?)~!(p*+ mz)““hh,h,fs(p)]

-1/2

2

=j}/2gj,——1,j2,j3(p)+

p(*+m*) g, . 5.(p)
Similarly,
- 3 .
2 . (pl _a_p,) hjlstst(p) = (Jl + 1)1/2h1'1+1,1'2aj3

and the proof is analogous. W

The standard basis e, e,, e; for V corresponds to the color states since
they are the eigenvectors of the color observable. We define the three-
dimensional Fourier transform F,: V- V as the matrix :

1b51
Fo=—=|b b 1|, b=/
Y

111

We call the matrix P, = Fi CF; the color momentum observable [1,2]. The
eigenvalues of P, are c,, ¢,, ¢; with corresponding eigenvectors f;=F¥e,
j=1,2,3. These give the color momentum states and have the components
fi=37"2(b,b,1), ,=37"%(b,b,1), f,=37"%(1,1,1). We define A(f)=
W(j) and A*(f)=W¥*(j), j=1,2,3. For arbitrary fe V, we define
A(N) =X NHAL)

A*(f) =TS [HA*S)
It is easy to check that [A(f), A*(g)]=(g,f). We also define the field
operators

7(f) =2"TA()+A*(N)]
¥(f)=—2""2[A(Sf) - A*()]

In the next theorem, for fe V, we write f=((f.£), (£, (£.f)) and T=
(S 5 S )5 S5 ).
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Theorem 7. For f€ V we have
1
V2

A*(f) =%[f~p+%<p2+mz)-‘f-p—f‘VJ

A(f)=—=[T-p—3p’+m>)'T-p+{-V]

m(f)=Re f-p+§l(p2+ m?) 'Imf-p—ilmf-V
$(f)=—Im f'p+5l(p2+ m?) 'Ref-p—iRef-V

Proof. These follow from Lemma 6 and the definitions. M
From Theorem 7, if f€ V is a real vector, we have

i - ,
m(f)=1-p, z[/(j)=5(p2+m2) f-p—if-v
In particular,

i ., .9 .
7(f)=p; t/f(fj)=5(p2+m2) lpj_la_pa i=1,23

J
The jth particle number observable becomes

N(f)=A*(HA)

_1[ )/ S S i]
P op 4(p*+m®?’ 2(p°+m?)  (p*+m?®) op;

2
and the total number observable is
1 5p° 3 1
N=Y N(f)==|p*—-V*-3I—- + + -V]
L N(f) 2[P 4(p2+m2)2 2(p2+m2) p2+m2p

We now define the second quantization of linear operators on V. If
B: V- V is a linear operator, we define

I'(B) =% A*(fi) A(Bfy)

For example, I'(I) = N, I'(P,) = N(f), j=1, 2,3, where P; is the projection
onto f.

Lemma 8. (a) The definition of I'(B) is independent of the basis.
(b) If B is self-adjoint with eigenpairs A; g, j=1,2, 3, then

I'(B)= E Al fons 80810 [YA* () A(Sm)

=§ AA*(gi) A(gy)
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(c) If B is self-adjoint, then so is ['(B).
Proof. (a) Let g; j=1,2,3, be another orthonormal basis. Then

3 A%(@)A(Bex) =5 4" (250115 ) A( BE (g st
= T (60 PN SO DA
= £ ADABE) 3 U )5 1)
-3 A A
(b) By part (a) we have
[(B) =% A*(8)A(Bg) =% MA*(8)Alge)
-5 nat (2 20) A5 e st
= T Al 8K YA
(¢) This follows from part (b). W
Let B: V> V be self-adjoint with matrix By; that is, Bf =Y, Byf, On

the six-dimensional space of operators spanned by :I'( i), ¥, j=1,2,3,
define a linear operator B by (BYV)(k) = A(Bf,), (BY*)(k) = A*(Bf.).

Lemma 9.
(a) (B¥)(k)=Y By¥(j), (BY*)(k)=Y By¥*(j)

(b) T(B)=3 W*(k)(B®)(k)=3 (BY*)(k)¥(k)= Y By W (¥ ())
Proof.
(a) (BY)(k)=A(Bf)= A(z_ B,-,J;) =Y BuA(f) =X By¥(j)
(BY*)(k) = A*(Bf,) = A* (z_ B,-k;s) =3 BuA*(f) =% By ¥*(j)
(b) T(B)=3 A*(fi) A(Bf) =X ¥*(k)(BY)(K)
=Y ¥*(k) 2 By¥())
=% BeW*()¥ () =L ¥ B ¥* (k) ¥ ()

=Y (BY*)(j)w() W
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A function v(j, k) = v(k, j), j, k=1, 2,3, corresponds to a two-particle
potential on V® V. We define the second quantization of v by

I'(v)=3 2, vl KT (k)¥*(j)¥(j)¥ (k)

We now consider dynamics. In the Heisenberg picture, we define
‘If(k, t) — elT(H)th(k) e-iI'(H)t

where H: V- V is a self-adjoint matrix corresponding to the Hamiltonian.
Notice that

[W(k,j), ¥(j, )1=[¥*(k, 1), ¥*(j, £)]=0
[\I’(k, t)5 \P*(.}, t)] = Skj
Differentiation gives

ia‘lf(k, 1)

=¥k 1), T(H)]

For B: V> V we extend the definition of B by

(BY)(k 1) = e (BY) (k) e =L By¥ (i, 1)

Suppose Hy: V- V is a free-particle Hamiltonian and v(j, k) corresponds
to a two-particle potential. We then take H= T'(H,)+TI'(v) as the second
quantized Hamiltonian. The next theorem shows that rigorous results can
be obtained in the finite-dimensional theory where the corresponding results
in the usual infinite-dimensional theory are only heuristic.

Theorem 10. 1f W(k, t) = U (k) e, then
oV (k, t A , , .
S0 Bk o+ [z_ o0, IV, DV, t)]m, )
J
Proof. Applying Lemma 9(b) we have
H =3 Hog¥*(k)¥(j)+3 T (i, k) (¥ (¥ () ¥ (k)
I 1
Since H commutes with e we may write
e it I'_'I —iHt
Zk GV*(k, )P (), 1)
+3 ¥ 0(j, K)U*(k, )¥*(j, )0 (j, ) (k, 1)
ik

H=
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Hence

t
A0 _

) (n,)H — H¥(n, t)

= 77( Hol[¥(n, tY¥*(k, )V (j, 1) —V*(k, )P (j, )¥(n, )]
+3 Zk v(j, K[V (n, t)T*(k, )¥*(j, )P (j, (K, 1)

—WH(k, )¥*(j, )P (j, )W (k, t)¥(n, 1)]
= Zk Ho[W(n, t)¥*(k, )I¥(j, 1)

+3 Zk v(j, K[ (n, 1), W*(k, )¥*(j, DIV (), ) ¥ (K, 1)

Now
(¥ (n, 1), ¥*(k, )¥*(j, N]=[¥(n, t), ¥*(k, 1)]¥*(j, 1)
+WH(k, [ (n, 1), U5, 1)]
=W*(j, )8, +V*(k, 1)5,;
Thus

ia‘If(n, t)

o =3 Hon¥(J, )+ X o(j, n)¥*(j, 0¥ (), 0¥ (n, 1)

+3¥ v(n, k)U*(k, t)¥(m, t)¥(k, 1)
= (ﬁo‘P)(n)+(Z o(j, nY¥*(j, ()W (j, t)) V(n1) W

5. FINITE-DIMENSIONAL DIRAC THEORY

On C? we have defined the color observable C =diag(c;, ¢,, ¢;) and the
color momentum observable Pc = F5CF; with eigenvectors e,, e,, e; and
fi> f2, f3, respectively. We define the Klein- Gordon Hamiltonian on C* by
Hyo =[P%+m’I]"? The second quantized particle Klein-Gordon Hamil-
tonian is defined as I'( Hxs) and the second quantized wave Klein- Gordon
Hamiltonian is defined as

W(Hge) =[7(f)*+ (£ + m(f3) + m’ T =[p*+ m*]"?

In order to motivate a finite-dimensional Dirac theory, we consider a
quark model discussed in [1, 2]. As shown in [1, 2], quark states are given
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by vectors in C"2. The states are conveniently described by four parameters:
color (r, y, b), flavor (d, u, s, ¢, b, t), spin (up, down), type (particle, antipar-
ticle). In this way we write C’* as the tensor product of four subspaces,
C?*=C’RC°®C*QC? the color, flavor, spin, and type subspaces. On the
spin subspace C?, there are three spin observables, which are givenby 7, 7, 73
of Section 2. On the type subspace C?, particles are represented by the
vector ¢, = (1, 0) and antiparticles by the vector ¢, = (0, 1). The type observ-
able T has eigenvalue 1 for particles and eigenvalue —1 for antiparticles.

Thus
0
0 -1

The conjugation operator K takes particles to antiparticles and antiparticles
to particles; that is, Ki»; = ¢, and Ky, = ¢,. Hence,

01
K= [1 0]
On the color subspace C°, the color momentum observable has the spectral
representation Po =c¢,P,+c,P,+c;P;, where P, P, P, are the one-
dimensional projections onto f;, f, f, respectively. We shall not need the
flavor subspace C® in our present discussion except to comment that the
constant m which follows has one of the six possible flavor values corre-

sponding to the six flavors [2].
We now define the Dirac Hamiltonian as

Hp,=¢,Pi®@7 QK+ ,P,O1,0K+¢;P,@mQK+mIQIR®T
This expression can be simplified by defining the following 4 X4 matrices:
I 0 0 7
=I®RT= =K = 4 i=1.2
ay ® [0 _I]a aj T]® [T] 0]9 J 1a 93
We then have
Hp=cPi®@a;+cP,Qa,+ ¢; PsQ@az;+mIQ ag

Of course, the a;, j =0, 1, 2, 3 are the Dirac matrices and satisfy the relations
[a;, ]y =0, af-= I j=0,1, 2, 3. Because of these relations, we have

HL=cP, @I+ AP,RI+ciP,QI+m*IRI

=(Pe+m’)®I=Hyxc®I
We define

F(HD) - C]F(P1)®a1+ C2F(P2)®a2+ C3F(P3)®a3+ mF(I)®a0
= N(fi)®a+N(f)®ar+ s N(f;)®a; +t mN®a,
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and
W(Hp)=7(f)®a;+7(£)® o+ 7(f;)®m@a,
=p®a;+p,R@a,+p;Ra;+mBa,
The proof of the next theorem is tedious but straightforward.

Theorem 11. The eigenvalues of Hy, are double eigenvalues and consist
of the numbers A;. =+2"*(¢;+m), j=1,2,3. The normalized eigenvectors
corresponding to A;, are f,®gus, j=1,2,3; k=1,2, where

g1+ =(4=2°%7Y%1,0,0,2"2-1)
81 = (4-2¥%)7Y%0,1,2'~1,0)
gn-=(4+2"%)7V2(1,0,-2"2~1,0)
g2 = (4+2%%)7V%0, 1, -2"2~1,0)
gnr=(4—2"%7"%1,0,0, i(2'*-1))
g2e =(4—2%)712(0, 1, i(2V%~1), 0)
g2 =(4+27%)71%(1,0,0, —i(2"*+1))
g2 = (4+2%2)7V2(0, 1, i(2V2+1), 0)
g =(4—2°%712(1,0,2"2-1,0)
g3 = (4—2¥%)712(0,1,0,1-2"?)
g31-=(4+27*)7V(1,0, =221, 0)
g3 = (4+2°%)71%0,1,0,2"2+1, 0)

One also has the analogs of other Hamiltonians in common use. For
example, the Foldy-Wouthuysen form of the Dirac Hamiltonian is

HFW =[P2C+ mZI]l/2®a0

Theorem 12. The eigenvalues of Hgyw are double eigenvalues and
consist of the numbers A;. = ¢;+m, j=1, 2, 3. The normalized eigenvectors
corresponding to A;. are f®hy., j=1,2,3; k=1,2, where

hj1+ = (1, 0, O, 0)
hj»+=(0,1,0,0)
hjl—- = (0’ 0’ 1’ 0)
hj2—=(0a 0, 0’ 1) ]=1, 2’3
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